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ABSTRACT

Any approach to qualification of advanced technologies
during product development must include an assessment of
variation expected in product life over the life cycle.
However, testing product design options in development, to
approach an optimal design, is costly and time consuming.
Hence, simulation of product life distributions for virtual
qualification, can be a valuable tool to evaluate and qualify
design options. This paper presents a physics of failure
based approach to virtual qualification of advanced area
array assemblies, against solder fatigue failure. The
approach applies Monte Carlo Simulation to evaluate solder
joint fatigue life distributions, given material property
variations and manufacturing capabilities. Preliminary
results using the simple Engelmaier Model as the basis of
simulations are presented. Simulation
results are compared to data accumulated from two test
environments and two BGA product types. The results
reveal some of the limitations of the Engelmaier Model as a
basis for simulation. They also show the potential of this
approach to virtual qualification for design and
manufacturing capability assessment in development.

INTRODUCTION

Product qualification is intended to assure that a new
design will meet the lifetime required for the application
with minimal risk of failure. In addition, qualification is
used to assure manufacturing processes produce minimal
risk of early failure due to defects or inadequate process
capability. We are forced to recognize in applying
qualification, that materials properties and various
geometric variables subject to manufacturing processes are
random variables. These variations give rise to uncertainty
in product life, as shown in Figure 1.
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Figure 1  Materials property variation



Qualification must assure the design and manufacturing
capability produce adequate product life. The method of
qualification must also recognize variations in materials
properties and manufacturing capability produce
uncertainty in product life.

In conventional qualification, we therefore select a sample
size and test the sample products under stress to failure or
until some specified time period. We then examine the
confidence we have in our design and manufacturing
processes.

Yet, many options in architecture may be selected to create
a hierarchy of packaging for an electronic product. There
are many materials options and potential manufacturing
processes. In addition, new developments provide
expanding options. Virtual qualification is therefore

desirable as an alternative to testing all potential options.
Virtual qualification implies that we evaluate a model of
the product under stress. We can therefore evaluate and
qualify many options in architecture for a product in rapid
time, at lower cost. However, we must still fulfill the
requirement of understanding the impact of variation as
illustrated above, in Figure 1. Hence, Monte Carlo
simulation becomes a valuable approach to developing a
virtual qualification scheme.

The following sections present an approach to simulation of
life based upon input variation of materials properties and
manufacturing capability. To illustrate this approach to
virtual qualification, we apply the process to Ball Grid
Array architectures and compare the results to qualification
test data on actual product. Two test conditions and
architectures are evaluated. As summarized in Table 1.

Table 1. Qualification Conditions

Test Facility  BGA Package
Style

Actual Test Sample Size  Cyclic Conditions

Jet Propulsion
Laboratory

313 PBGA
35 mm X 35mm
1.27 mm pitch
Full Array
15x15mm die

n=13 -30 to +100oC
 tD @100oC = 20min
 tD @-30 oC = 10 min
 Ramp time = 20 min

Motorola
Semiconductor
Products

119 PBGA
14 mm X 22 mm
1.27 mm pitch
Full Array
9 x 16 mm die

n = 27 0 to +100oC
tD = 5 min
Ramp time = 10 min

VIRTUAL QUALIFICATION BY
SIMULATION

A method of virtual qualification is summarized in
Figure 2.  In this case, time to failure models
representing the dominant failure mechanisms are
embedded in a Monte Carlo simulation. Input
variations representing manufacturing capability and
material properties are modeled as triangular
distributions. These estimates must be extracted from
materials testing and manufacturing history.

The process is exercised as follows:
• The test or application conditions are

determined.

• A failure model is selected.
• The input distributions are then sampled using a

random number generator.
• The life is calculated from the failure model.
• The result is stored.
• The input distributions are sampled again and

calculation is repeated for a preset number of
samples.

• The results of the stored are analyzed by fitting
the data to a distribution, which represents the
life distribution of the failure mechanism.

In the case of the BGA application, we initially have
selected the well-known Engelmaier model to
represent the failure mechanism of solder fatigue for
these initial studies.



Fig. 2. Virtual Qualification Process by Monte Carlo Simulation (Evans and Evans 1999).
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BGA LIFE SIMULATION

For Ball Grid Array products, a primary failure
mechanism is solder fatigue. Solder fatigue is
induced as a result of coefficient of thermal
expansion mismatches between the BGA carrier
substrate and the PWB used for interconnection.
Changes in temperature by power cycling or thermal
cycling induce cyclic strains. Cyclic strain causes an
accumulation of damage that results in the
development of cracks and eventually fracture. Creep
and stress relaxation maximizes the damage induced
in the solder.

There are several approaches to modeling this
complex process, which may serve as a basis for
virtual qualification of a BGA assembly. Each
approach has some limitations. Among the simplest
model is the Engelmaier model. This model assumes
that the shear strain developed is proportional to the
maximum strain in the solder, when the solder fully
deforms in accordance with the differences in the
coefficients of thermal expansion between the BGA
component and the PWB used to mount and
interconnect the components. The maximum strain
is then related to the number of cycles to failure by
the Manson -Coffin relationship.

The relationship is well known and is easily derived
(Engelmaier 1983, 1989, 1990). The following
equations express the Engelmaier model:
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∆

∆
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α α
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2     (1)

where the shear strain range, ∆γ is a function of the
critical distance from the neutral point of the part.
However, LD, the diagonal distance from corner joint
to corner joint in the failing row of solder balls, is
easily measured.  Equation 1 also includes the height
of the solder joint , h, the differences in the
coefficients of thermal expansion (CTEs), α , and
the temperature differential ∆T.

ξ is the strain correction factor, which depends upon
the package style. Engelmaier reports that
0.7<ξ<1.5. Values less than 1 imply the a reduction
in the predicted maximum possible shear strain, due
to constraining factors, whereas values greater than
1 imply added strains due to significant warping,
large strain concentrations or localized thermal
mismatches. Warping increases with increasing ∆T

and will also lead to development of significant
tensile strains. Overall, solder joint strains are more
accurately predicted by finite element methods than
with correction factors. However, the simplicity of
equation 1 is attractive and  it provides a rapid
closed form solution.

In the case of BGA style packages, Amagi (1998)
reported that the strains in the critical BGA joints
are a function of the total number of balls on the
BGA. The net strain is inversely proportional to the
number of balls, S.  Hence, increasing the number of
balls constrains the net expansion. Therefore, ξ α 1/S
and ξ<1.  A simple comparison of test results and
calculated values for the median value of  the
number of cycles to failure shows that  ξ = 0.54 for
the Motorola Qualification, which is the value used
for the 119 pin BGA. ξ = 0.46 for the JPL
Qualification, which is the value applied for the 313
pin BGA. In these cases, ξ  in only valid for the
stated package, under conditions in which warping is
not significant.

The number of cycles to failure is then a function of
the shear strain in accordance with the well-known
Manson-Coffin equation:

∆ γ ε= 2 2f
cN' ( )

(2)

where ε f
' is the fatigue ductility coefficient and N is

the cycles to failure. Engelmaier fit the fatigue
ductility exponent, c, to test data for many different
conditions, accumulated by Wild (1975). This
empirical relationship accounts for added creep
damage and stress relaxation that varies with time.
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where Ts is the average temperature of the solder
and tD is the cyclic hold time. In testing, ∆T,  Ts and
tD are variables known with precision. This is not the
case with field conditions.

The Engelmaier model uses several obvious
simplifying assumptions, which are debated in the
literature. The model is applied most appropriately
to a temperature range of 0 - 100oC and to a cycle
with a symmetrical hold time allowing for
significant stress relaxation. In addition, as
discussed, warping effects and complex strains are



not modeled. Beyond the model envelope of  0 -
100oC range, more complex methods should be
applied. The strain energy must be estimated from
finite element calculations, the damage mechanisms
must be partitioned and their contribution to the total
strain energy separated. Miners rule is then applied
(Dasgupta 1992).  A closed form approximation to
life can be extracted from this procedure using a
statistically designed experiment. (Evans, Evans and
Ryu 1997)

In spite of its limitations, the Engelmaier model does
contain the primary variables describing the life of a
BGA solder joint for shear strain dominated fatigue
damage, with appreciable creep. This particularly
applies for full array style packages, in which the die
influences the coefficient of expansion, at the critical
failing row of joints. Evans et. al. (1997) suggested
that a few primary variables are likely to dominate
fatigue reliability. Hence, the Engelmaier model’s
simplicity is attractive for a Monte Carlo simulation.

The set of variables comprising the Engelmaier
model consists of materials properties and geometric
variables. These variables are random variables that
contain significant uncertainty. The accuracy in
applying the Engelmaier model or any other damage
modeling is dependent upon proper treatment of
these uncertainties.

The geometric variables have variations, which are
defined by the BGA manufacturing process, PWB
fabrication and PWB assembly processes. For
example, LD has variation arising from pad
placement accuracy on the BGA substrate and PWB;
h varies according to the screening process
variations and solder paste parameters.  α BGA is
influenced by the materials and geometry that define
the BGA structure. It is a function of the coefficients
of thermal expansion of the materials, the
thicknesses and moduli of elasticity. The material
properties may vary considerably for all polymers in
the structure and the thickness will vary according to
the BGA fabrication processes, such as die bonding
and encapsulation.. α PWB will vary according to the
printed wiring board fabrication processes and the
variations in the reinforcements and resins that

comprise the board. Finally, ε f
' is an alloy ductility

property of the solder, which will have considerable
uncertainty associated with it, according to solder
ductility and microstructure variations.

In summary equations (1)-(3), contain a set of
random variables. They must be treated as such, in
order to exercise a qualification of a product. In
order to implement our process of virtual
qualification, materials testing and manufacturing
characterization must quantify the levels of
uncertainty. The inputs to the equations were
modeled as simple triangular distributions. The
triangular distribution parameters included the
minimum value, maximum value and most likely
value of the random variable. These parameters were
measured from actual samples of the two BGA
packages subjected to qualification.

Height variations were determined from cross
sections of mounted packages at the critical failing
row of joints at the die perimeter. The diagonal
distance LD was determined by x-ray of unmounted
packages to accurately identify the position of the die
and failing row of joints. CTE measurements were
taken also at the critical row by removing the
package material around the die perimeter and
measuring the remaining trimmed package by TMA.
The number of measurements varied for each
parameter and ranged from 6 - 20 depending upon
package sample availability. The triangular
distribution parameters were estimated from the
data. The results are summarized in Table 2.

The fatigue ductility coefficient was also estimated
as a random variable. The most likely value was
taken as 0.325, which is frequently reported in the
literature.  The range of this variable was taken as
0..28-0.37.  This range is consistent with the range
of true strain at fracture for Sn63Pb37, as measured
from tensile testing (Hagge 1982). True strain at
fracture is closely related to the ductility coefficient,

ε f
'

 (Fuchs and Stevens 1980).

The PWB in either case was FR-4. The coefficient of
expansion of FR-4 was measured by TMA in the X
and Y (warp and fill) directions, keeping in mind
that PWB laminates are orthotropic. The Motorola
test substrates were measured from 6 samples and
the variation was determined according to observed
values; the X direction ranged from 13.1 to 18.1
ppm/oC and the Y direction measured 16.1 to 19.3
ppm/oC. Previously published data were used for the
JPL simulation. TMA values reported by Ghaffarian
(1997) showed the average values for FR4 were 14.5
ppm/oC  in X and 16.8 ppm/oC  in Y . The same
variation was used as measured from Motorola
samples.   



Table 2. BGA Package Parameter Variations Used as Inputs to Engelmaier Model

   Motorola
119 PBGA

  JPL
313 PBGA

   Min       Most       Max    Min         Most       Max

h
(mm)

LD

(mm)

 α  α BGA-X

ppm/oC

 α  α BGA-Y

ppm/oC

 0.5503     0.5669      0.5815

 16.203     16.259      16.362

7.407      7.462       7.54

  7.735      7.81        8.01

0.514        0.562      0.631

 17.178        17.203     17.230

5.225         6.10       7.02

  5.46          6.22       6.91

INITIAL SIMULATION RESULTS
Initial simulation data are shown in Table 3. The
data were compiled at 1000 simulation runs.

Table 3. Simulation Results for Two Qualification Conditions
n=1000 Simulations

     Motorola
Qualification

      JPL
Qualification

2P_Weibull

Beta
Eta
Mean
Variance
0.01 Percentile
0.05 Percentile
Percentile

 7.1768
  13044.16
  12217.8
  4023241.5
  6871.4
  8623.4
  9533.2

6.9534
9189.18
8259.9
2110502.75
4742.0
5994.7
6648.5

3P_Weibull

Beta
Eta
Mu
Mean
Variance
0.01 Percentile
0.05 Percentile
0.1 Percentile

.

 3.1298
5809.88

  7059.71
  12257.8
  3308168.0
  8395.8
  9308.8
  9890.5

3.1036
4166.68
4894.96
8621.44
1725965.3
5841.4
6495.1
6912.8



Lognormal

Mu
Sigma
Mean
Variance
0.01 Percentile
0.05 Percentile
0.1 Percentile

 9.4027
  0.1516
  12261.5
  3496341.9
  8518.5
  9445.8
  9980.8

9.0509
0.1526
8625.74
1753815.95
5977.6
6632.9
7011.1

Examination of the plotted simulation data shows
that the data tend to curve concave downward. This
is also often observed in test data (Mawer and
Luquette 1997). An example of this is shown below
in the plotted simulation data shown in Figure 3.
The data curve downward in a pronounced fashion
and deviate from the fit distribution. This effect is
also apparent in test data (Mawer and Luquette
1997). However, it is not as pronounced, as the
sample sizes for actual tests are much smaller and
data does not accumulate for small probabilities of
failure.

Fig. 3. A 2-P Weibull plot showing pronounced
curvature. This indicates a 3-P Weibull may be more
appropriate to the data.

The pronounced curvature generally indicates that
there is a failure free period before wear out takes
effect and implies that the three parameter (3-P)
Weibull Distribution should be fit to the data. Hence,
the simulation data were also fit to the 3-P Weibull
using the method of O’Connor (1991). The data
were also fit to the logNormal distribution, which is
recommended by Blish (1997). A χ2 goodness of fit
test was performed on all three distributions as
shown in Table 4.

Without detailing the descriptions of statistical
inference that can be found in good references
(O’Connor 1991, Evans and Evans 1999), Table 4
can be simply interpreted. A distribution can be said
to fit the data if the cut-off value of the χ2 statistic
extracted from tabulated values is greater than the
calculated test value statistic. The confidence level of
the fit is 1-α, where α is the probability of error. As
an example, at a confidence level of 99%, χ2

 α

> χ2
Test for the Motorola Qualification Conditions.

Inspection of Table 4, quickly shows that the
simulation data best fit the 3-P Weibull distribution
for both test conditions. The data fit this distribution
at all three tested confidence levels, for the Motorola
qualification conditions, and fit the JPL qualification
conditions at 90 and 95%. The data do not fit the 2-P
Weibull at the tested confidence levels of 90, 95 or
99%. The data fit the logNormal only at a confidence
level of 90%, but not at higher confidence levels of
95 or 99%.

ANALYSIS OF ACTUAL QUALIFICATION
TEST DATA

As previously explained, data were obtained on
actual assembled products at Motorola and JPL
facilities under two different qualification testing
condition. The conditions were different for the two
data sets, as were the sample sizes, n.  Each data set
was fit to the same three wear out distributions as the
simulated data. The results of the analysis are
summarized in Table 5.

In addition, a χ2 goodness of fit test was also
performed on the data. The results are summarized
in Table 6.



Table 4. χχ22   Goodness of Fit Test Results on Simulation Data
for Three Wear Out Distributions

   Motorola
Qualification

        JPLQualification

2P_Weibull 3P_Weibull lognormal 2P_Weibull 3P_Weibull lognormal

Test
statistics

173.82 17.82 28.08 95.91 25.85 39.36

Cut off
for αα=

 0.01

 0.05

 0.1

33.41

27.58

24.77

33.41

27.58

24.77

33.41

27.58

24.77

33.41

27.58

24.77

33.41

27.58

24.77

33.41

27.58

24.77

Table 5.  Results of Fitting Distributions on Actual Data
for Two Qualification Conditions

     Motorola
Qualification
n=27

      JPL
Qualification
n=13

2P_Weibull

Beta
Eta
Mean
Variance
0.01 Percentile
0.05 Percentile
0.1 Percentile

6.88
12215.52
11416.6
3799486.75
6259.4
7932.7
8807.7

21.405
4103.56
4001.4
53897.6
3309.9
3571.9
3694.1

3P_Weibull

Beta
Eta
Mu
Mean
Variance
0.01 Percentile
0.05 Percentile
0.1 Percentile

   2.8733
   5442.72
   6575.83
   11427.2
   3358903.5
   7673.6
   8511.7
   9062.8

   21.1721
   4059.875
   43.64
   4001.4
   53881.88
   3310.7
   3572.1
   3694.1



Lognormal

Mu
Sigma
MeanVariance
0.01 Percentile
0.05 Percentile
0.1 Percentile

   9.3294
   0.1696
   11427.4
   3810258.0
   7592.1
   8522.3
   9063.9

   8.2919
   0.062
   3998.91
   61493.43
   3455.6
   3604.6
   3686.6

Table 6. χχ22   Goodness of Fit Test Results on Actual Qualification Test Data
for Three Wear Out Distributions

   Motorola
Qualification
n=27

     JPLQualification
n=13

2P_Weibull 3P_Weibull lognormal 2P_Weibull 3P_Weibull lognormal

Test
statistics

2.3030 0.6264 0.5719 0.2905 0.2919 1.1635

Cut off
for αα=

0.01

 0.05

 0.1

11.3449

7.815

6.2511

11.3449

7.815

6.2511

11.3449

7.815

6.2511

11.3449

7.815

6.2511

11.3449

7.815

6.2511

11.3449

7.815

6.2511

Actual test data will fit any of the three of the wear out
distributions. An inspection of Table 6 shows that the
parameters and distributions in Table 5, can all be used to
represent the results of the qualification test. This can be
explained in part by the sample size. The sample sizes do
not allow for accumulation of data below a probability of
failure of 0.02 for the Motorola data and below 0.05 for the
JPL data. Recall that BGA fatigue data will tend to deviate
from the 2-P Weibull at lower probabilities of failure. A
probability plot shows the characteristic behavior of
curvature in the Motorola data even though the data
apparently may be fitted to a 2-P Weibull. This suggests the
3-P Weibull is a better model. If we accept the 2-P Weibull,
we will predict lower reliability than either the logNormal
or 3-P Weibull. While this is conservative, it may have
economic implications, particularly for producers.
LogNormal is the least conservative.

COMPARISON OF SIMULATIONS AND ACTUAL
TEST DATA

A comparison of Tables 3 and 5 show that the simulation
data are very representative of the actual test data for the
Motorola qualification test conditions. The 2-P and 3-P
Weibull probability plots comparing the data sets are shown
in Figures 4 and 5. The 2-P Weibull plots clearly show the
curvature in the actual and simulated test data. As
discussed, this suggests the
3-P Weibull should be used for the data. In comparing the
3-P Weibull plots, we see the data for the simulation and
the actual test data are closely matched, for ξ =0.54. The
fitted 3-P parameters result in less than 7% difference in
the life prediction at a probability of failure of 0.01. The
fitted data also plotted well within the 95% confidence
bands of the actual data. This relatively close match is



encouraging for Monte Carlo simulation as a virtual
qualification tool.

However, the fitted 3-P Weibull plots also show that the
simulation was somewhat non-conservative. This may
indicate that one or more of the sources of variation, input
to the model, is not accurately representing the true
variation in the parameter. However, it would be very
interesting to make a comparison of the simulation to
actual test data, for a larger sample size.

Figure 4. 2-P Weibull plot of simulation and actual test data
for the Motorola qualification test conditions. Both data
sets show curvature.

Fig. 5. 3-P Weibull plots of simulation and actual test data
for the Motorola test conditions. The plot compares the
simulation data generated for ξ =1.0 and ξ =0.54.

A comparison of the JPL data simulations and actual data
do not compare well. The 3-P Weibull shape parameter for
the simulation and actual data are dramatically different.
This is not surprising and can be explained by the fact that
the Engelmaier model does not represent the process of
failure in the JPL Qualification. The JPL Qualification

temperature range exceeds the envelope of the model
application. In addition, the JPL Qualification does not use
a symmetrical test cycle. In order to represent the JPL test
conditions, we must apply a more complex process of strain
energy prediction and strain partitioning to represent the
damage occurring in the solder. However, the process of
simulation has provided much more information to assess
the differences than in comparing two single point
predictions. Simply comparing the estimated mean life
allows us only to say that the Engelmaier model is in error.

CONCLUSIONS

While this research is preliminary, several conclusions can
be drawn. This effort advances our understanding of
physics of failure and shows the value of proper treatment
of uncertainty and variation in reliability modeling. In
addition, we can see that Monte Carlo simulation, as
presented in Figure 2, is a valuable tool for implementation
into a virtual qualification test scheme for electronic
devices and assemblies. It is compatible with proper physics
of failure assessment, while providing advantages of
properly treating uncertainty. In addition, we that see much
more information is available about the process of failure,
from a Monte Carlo simulation.

This work also underscores other facts about qualification.
Sample size is an extremely important issue in qualification
testing. The accuracy of any prediction from test data is
dependent upon initial sample size, by effecting the proper
selection of a failure distribution and confidence in the
data. However, we are often severely limited by cost in
prototype development. Hence, simulation can be a valuable
supplemental, low cost analysis process. In addition, we see
that careful consideration must be given to selection of a
failure distribution to model the uncertainty in product life.
The distribution cannot be arbitrarily selected. Probability
plotting and goodness fit tests can be valuable, provided we
have a sample size to differentiate candidate distributions.

Specifically for BGA solder fatigue, we can draw some
additional conclusions. The 3 parameter Weibull
Distribution should be carefully considered for the analysis
of qualification data, as seen from both actual and
simulated data. This is consistent with findings of other
investigators (Lau 1995). The 3 parameter Weibull may
best represent fatigue failures in BGA solder joints, in
comparison to the two parameter Weibull or log Normal.
In addition, the Engelmaier Model has been shown not to
represent the process of fatigue damage outside its intended
envelope of 0-100oC. In order to model test data outside
this range, a more complex strain partitioning approach
should be employed. In addition, simulating other package
styles would require careful consideration of the simulation
basis.
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